Chapter 11 Review-Answers are at the end

Completion

Complete each statement.

1.	is a measure of how far an object has moved.	
2.	The speed and direction with which an object moves is its	·
3.	The slope of the distance-time graph gives the	
4.	Acceleration occurs when an object changes its	or or both.
5.	An object changing its speed from 10 m/s to 3 m/s is undergoing	acceleration.
6.	As a car slows down approaching a red traffic light its	is negative.
7.	When calculating acceleration, to find the change in velocity, you subtrac velocity.	the velocity from the
8.	The SI unit for measuring is the meter.	
9.	The direction and length of a straight line from the starting point to the en	ding point of an object's motion is
40	·	
10.	Speed is measured in units of	
11.	A car's speedometer measures	
12.	$\overline{v} = \frac{d}{t}$ is the equation that defines	
13.	A constant slope on a distance-time graph indicates	speed.
14.	The difference between speed and velocity is that velocity indicates the _ does not.	of motion and speed
15.	A distance-time graph indicates an object moves 20 km in 4 h. The avera	ge speed of the object is
16.	Because its is always changing, an object movi change in velocity.	ng in a circular path experiences a continuous
17.	Two or more velocities add by	
18.	A moving object does not if its velocity remains	constant.
19.	Freely falling objects accelerate at 9.8 m/s ² because the force of	acts on them.
20.	The velocity of an object moving in a straight line changes at a constant r	ate when the object is experiencing constant
21.	The acceleration of a moving object is calculated by dividing the change i which the change occurs.	n by the time over
22.	A car that increases its speed from 20 km/h to 100 km/h undergoes	acceleration.
_		

Short Answer

- 23. A truck travels to and from a stone quarry that is located 2.5 km to the east. What is its distance? What is its displacement?
- 24. Two cars start at the same point and drive in a straight line for 5 km. At the end of the drive their distances are the same but their displacements are different. Explain.
- 25. An inline skater is skating around a parking lot. Can she have constant speed and a changing velocity? Changing speed and constant velocity? Explain your answers.
- 26. Two cars are traveling along the same road at the same speed but at different velocities. Explain.
- 27. A car is driving down a road. Is it possible for its position to be changing and its acceleration to be zero? Is it possible for its velocity to be changing and its acceleration to be zero?
- 28. Describe how both velocity and acceleration are rates of change.
- 29. A car has an acceleration of -5 m/s^2 . Describe the car's motion.

Problem

- 30. A cross-country runner runs 10 km in 40 minutes. What is his average speed?
- 31. A high speed train travels with an average speed of 227 km/h. The train travels for 2 h. How far does the train travel?
- 32. Find the acceleration of a car that goes from 32 m/s to 96 m/s in 8.0 s.
- 33. During a race, a runner runs at a speed of 6 m/s. 2 seconds later, she is running at a speed of 10 m/s. What is the runner's acceleration? Show your work.
- 34. If you ride your bike at an average speed of 4 km/h and need to travel a total distance of 28 km, how long will it take you to reach your destination? Show your work.

Essay

35. Explain how velocity is different from speed.

Other

USING SCIENCE SKILLS

Figure 11-2

- 36. Using Tables and Graphs Which graph in Figure 11-2 shows periods of constant speed? Explain your answer.
- 37. Interpreting Graphics Look at Figure 11-2. Describe the motion of the object in Graph A.
- 38. Using Models Which graph in Figure 11-2 shows acceleration? How do you know?
- 39. **Calculating** Using Graph A in Figure 11-2, calculate the average speed of the object in motion from 12 s to 20 s. Explain your calculation.

COMPLETION

- 1. Distance
- 2. velocity
- 3. speed
- 4. speed, direction
- 5. negative
- 6. acceleration
- 7. initial, final
- 8. distance or length
- 9. displacement
- 10. meters per second
- 11. instantaneous speed

- 12. average speed
- 13. constant
- 14. direction
- 15. 5
- 16. direction
- 17. vector addition
- 18. accelerate
- 19. gravity
- 20. acceleration
- 21. speed or
 - velocity
- 22. positive

SHORT ANSWER

- 23. 5 km, 0 km
- 24. The two cars drove in different directions.
- 25. Yes, the skater could be changing directions. No, any change in speed will change the velocity.
- 26. The two cars are traveling in different directions.
- 27. Yes, it could have constant speed. No, a change in velocity is always an acceleration.
- 28. Velocity is the rate of change of position. Acceleration is the rate of change of velocity.
- 29. The car is slowing down at the rate of 5 m/s every second.

PROBLEM

- 30. s = d/t = 10 km/40 min = 0.25 km/min
- 31. *d* = s ' *y* = 227 km/h ' (2.00 h) = 454 km
- 32. $v_f v_i/t = (96 \text{ m/s} 32 \text{ m/s})/8.0 \text{ s} = 8.0 \text{ m/s}^2$

33.
$$a = \frac{v_f - v_j}{t} = \frac{10 \text{ m/s} - 6 \text{ m/s}}{2 \text{ s}} = 2 \text{ m/s}^2$$
34.
$$\overline{v} = \frac{d}{t}$$

$$t \times \overline{v} = d$$

$$t = \frac{d}{\overline{v}}$$

$$t = \frac{28 \text{ km}}{4 \text{ km/h}} = 7 \text{ h}$$

ESSAY

35. Speed is equal to the distance traveled divided by the time required to cover the distance. Velocity describes both speed and the direction of motion.

OTHER

- 36. Graph A shows periods of constant speed (0-8 s, 8-12 s, 12-20 s).
- 37. The object moves at constant speed for 8 seconds, is at rest for the next 4 seconds, and then moves at constant speed for the next 8 seconds.
- 38. Graph B shows acceleration. The upward curve of the line indicates that an increasing distance is covered each second.
- 39. The object moved a distance of 300 m in 8 s. The object's average speed is 37.5 m/s. \overline{v} = 300 m + 8 s = 37.5 m/s